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ABSTRACT: In [6] Freniche proved that any weakly null martingale difference sequence in L1[0, 1] has

arithmetic means that converge in norm to 0. We show any weakly null martingale difference sequence in

an Orlicz space whose N-function belongs to ∇3 has arithmetic means that converge in norm to 0. Then

based on a theorem in Stout [13][Theorem 3.3.9 (i) and (iii)], we give necessary and sufficient conditions for

a bounded martingale difference sequence in an Orlicz space whose N-function belongs to a large class of

∆2 functions to have means that converge to 0 a.s. Finally, we conclude with some expository comments

including an easy proof of Komlos’ theorem [9] for Lp[0, 1], 1 < p < ∞.

Mathematics Subject Classification. 46E30, 60F25, 28A20.
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1 Introduction

Recall that an N-function Φ is in ∆3 if there is a constant c > 0 so that Φ(cx) ≥ xΦ(x) for all large values

of x. Using the notation in [14] we say that an N-function is in ∇3 if its complementary N-function is in ∆3.

In [6] Freniche proved that any weakly null martingale difference sequence (mds) in L1[0, 1] has arithmetic

means that converge to 0 in norm. In Section 2, we first establish a similar result for the class of Orlicz spaces

whose generating N-functions belong to ∇3. In particular, we show in theorem 2.1 if F is an N-function

in ∇3 then any weakly null mds in LF has arithmetic means that converge to 0 in norm. ∇3 is a rather

large class of N-functions. It includes, for example, all N-functions F whose principal parts are defined

by F (x) = x(log x)p for p ≥ 1. It is worth noting that the union of all Orlicz Spaces whose generating

N-functions belong to ∇3 is L1[0, 1] [10, pp. 60-62].

Next recall that an N-function F belongs to ∆2 if and only if there is a constant K > 2 so that F (2x) ≤ KF (x)

for sufficiently large values of x. The other new result in Section 2, theorem 2.3, gives several necessary and

sufficient conditions for all bounded martingale difference sequences in an Orlicz space with N-function F in

∆2 that satisfies F (x)
x2 non-increasing on [0,∞) to have means that converge to 0 a.s. Theorem 2.3 is based

largely on a result stated in Stout [13, Theorem 3.3.9 (i) and (iii)]. However, the result in Stout’s book is

more than required. For the sake of completeness, clarity and ease of proof, in lemma 2.2 we state and prove

what we need to justify theorem 2.3.

At this stage we note that if F is in ∇3 then F is in ∆2 [10, p. 44, Theorem 6.5]. Furthermore if G

denotes the complement of F then F is equivalent to an N-function Q whose principal part is given by

Q(x) = xG−1(x) [10, p. 37, Theorem 6.2]. In light of this fact there is no loss in assuming that if F is in ∇3

then F (x) = xG−1(x) for some G in ∆3 and all sufficiently large values of x. Furthermore for all such x we

have:
d

dx

(
F (x)
x2

)
=

d

dx

(
G−1(x)

x

)
=

x
G′(G−1(x)) −G−1(x)

x2
=

x−G−1(x)G′(G−1(x))
x2G′(G−1(x))

.

By letting x = G(u) we get:

d

dx

(
F (x)
x2

)
=

G(u)− uG′(u)
G2(u)G′(u)

<
G(u)−

∫ u

0
G′(t)dt

G2(u)G′(u)
=

G(u)−G(u)
G2(u)G′(u)

= 0.

Thus F (x)
x2 is non-increasing for all sufficiently large values of x. But for any F in ∇3 and any p > 1, we have

that F (x) ≤ |x|p for large values of x [10, p. 38]. Hence F (x)
x2 ↘ 0. It follows then that if F is in ∇3 then F
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is in ∆2 and F (x)
x2 ↘ 0.

In section 3, which is expository, theorem 3.1 gives an alternate proof of the following special case of theorem

2.3: any bounded mds in Lp[0, 1], 1 < p < ∞, must have arithmetic means that converge to 0 a.s. Note that

theorem 3.1 is a known consequence of the important fact that any mds (dn) in Lp[0, 1], 1 < p < 2, has upper

p-estimates; that is, there exists a constant Cp > 0 depending only on p such that for all n and all choices

of scalars c1, . . . , cn, ‖
∑n

k=1 ckdk‖p
p ≤ Cp(

∑n
k=1 ‖ckdk‖p

p). The fact that any mds has upper p-estimates for

1 < p < 2 follows from Burkholder’s inequality [3, theorem 9] ‖
∑n

k=1 ckdk‖p ≤ Cp‖(
∑n

k=1 |ckdk|2)
1
2 ‖p and

the triangle inequality
∫

(
∑n

k=1 |ckdk|2)
p
2 ≤

∑n
k=1

∫
|ckdk|p for p

2 < 1. Our proof of theorem 3.1 is based

on the work of Banach and Saks [2] and Freniche [6] and shows in an elementary fashion that any mds in

Lp[0, 1], 1 < p < 2, has upper p-estimates. It is perhaps interesting to note that versions of theorem 3.1 for

sequences of independent random variables date back to Kolmogoroff [8] in the case p = 2, Marcinkiewicz

and Zygmund [12] for p > 1 and Chung [4] for more general function spaces.

Finally, Section 3 concludes with corollary 3.2 which shows in an elementary fashion that Komlos’ theorem

[9] holds for bounded sequences in Lp[0, 1], 1 < p < ∞. In its full force, Komlos’ theorem promises for any

bounded sequence (fn) in L1[0, 1], there exists an integrable f and a subsequence (gn) of (fn) each subsequence

of which has arithmetic means that converge a.s. to f . An impressive but surprisingly easy-to-prove result

of Gaposhkin [7] will be recalled in Section 3 to help establish corollary 3.2.

We conclude the introduction with some background material required for theorem 2.1. A subset K of

L1[0, 1] is called uniformly integrable if: given ε > 0 there is a δ > 0 so that sup
{∫

E
|f |dλ : f ∈ K

}
< ε

whenever λ(E) < δ. Alternatively K is bounded and uniformly integrable if and only if given ε > 0 there is

an N > 0 so that sup
{∫

[ |f |>N ]
| f | dλ : f ∈ K

}
< ε. A concept similar to uniform integrability is that of

equi-absolute continuity of norms. We say that a collection K ⊂ LF has equi-absolutely continuous norms

if:

∀ ε > 0 ∃ δ > 0 so that sup{‖χEf‖F : f ∈ K} < ε whenever λ(E) < δ.

Alternatively K is bounded and has equi-absolutely continuous norms if: given ε > 0 there is an N > 0 so

that sup{‖f ·χ[ |f|>N ]‖F : f ∈ K} < ε. The next result resembles the theorem of Dunford and Pettis. For its

proof the reader should consult [1, Corollary 2.9].
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Theorem 1.1 Let F ∈ ∆2 and suppose that its complement G satisfies:

lim
t→∞

G(ct)
G(t)

= ∞ for some c > 0 .

Then a bounded set K ⊂ LF is relatively weakly compact if and only if K has equi-absolutely continuous

norms.

Note that if F is in ∇3 then F satisfies the hypothesis of Theorem 1.1.

2 Mean Convergence Results for MDSs in Two Large Classes of

Orlicz Spaces

Theorem 2.1 If F is an N-function in ∇3 then any weakly null mds in LF has arithmetic means that

converge to 0 in norm.

Proof: The argument is essentially that of Freniche in [6].

Let (dn) be a weakly null mds in LF . Let ε > 0. For any M > 0 let en = dn · χ[|dn|≤M], ẽn = dn · χ[|dn|>M]

and for n ≥ 2 let fn = IE(en|d1, . . . ,dn−1). Notice that (en − fn) is a mds, uniformly bounded by 2M and

hence in L2[0, 1]. The conditioning now ensures that the sequence (en − fn) is orthogonal. Notice that:

0 = IE(dn|d1, . . . ,dn−1) = IE(en + ẽn|d1, . . . ,dn−1) = IE(en|d1, . . . ,dn−1) + IE(ẽn|d1, . . . ,dn−1)

and so:

fn = IE(en|d1, . . . ,dn−1) = −IE(ẽn|d1, . . . ,dn−1).

Now for any σ(d1, . . . , dn−1) measurable g in LG, with ‖g‖G ≤ 1 we have:∫ 1

0

gfndλ = −
∫ 1

0

gIE(ẽn|d1, . . . ,dn−1)dλ

= −
∫ 1

0

IE(gẽn|d1, . . . ,dn−1)dλ

= −
∫ 1

0

gẽndλ

≤ ‖g‖G · ‖ẽn‖F

= ‖g‖G · ‖dn · χ[|dn|>M]‖F .

4



Hence,

‖fn‖F ≤ ‖dn · χ[|dn|>M]‖F .

Now use theorem 1.1 to choose M > 0 big enough to ensure that supn ‖dn ·χ[|dn|>M]‖F < ε. Since F (x)
x2 ↘ 0,

the map L2 ↪→ LF is continuous and thus there is a constant K > 0 so that ‖f‖F ≤ K‖f‖2 for all f in L2.

For any positive integer N we then have:∥∥∥∥∥
N∑

n=1

dn

∥∥∥∥∥
F

≤

∥∥∥∥∥
N∑

n=1

(dn − en)

∥∥∥∥∥
F

+

∥∥∥∥∥
N∑

n=1

(en − fn)

∥∥∥∥∥
F

+

∥∥∥∥∥
N∑

n=1

fn

∥∥∥∥∥
F

≤
N∑

n=1

‖dn · χ[|dn|>M]‖F + K

∥∥∥∥∥
N∑

n=1

(en − fn)

∥∥∥∥∥
2

+
N∑

n=1

‖dn · χ[|dn|>M]‖F

≤ Nε + 2MK
√

N + Nε

and so,
1
N

∥∥∥∥∥
N∑

n=1

dn

∥∥∥∥∥
F

≤ 2ε +
2MK√

N
.

Therefore,

lim
N

1
N

∥∥∥∥∥
N∑

n=1

dn

∥∥∥∥∥
F

= 0.

The following lemma is a special case of a result stated in Stout [13, Theorem 3.3.9 (i) and (iii)] suitable for

our needs. The proof is included for the sake of completeness.

Lemma 2.2 Suppose φ is a positive even function with φ(x)
x non-decreasing and φ(x)

x2 non-increasing on

[0,∞) and (an) is a sequence of positive numbers with an ↗∞.

(a) If (dn) is an mds on [0, 1] such that Σ∞n=1
IE(φ(dn))

φ(an) < ∞ then 1
an

Σn
i=1di converges to 0 a.s.

(b) On the other hand, given any sequence of positive numbers (mi) such that
∑∞

n=1
mn

φ(an) = ∞ there exist

independent symmetric random variables (Xn) on [0, 1] such that IE(φ(Xn)) = mn for all n and 1
an

∑n
i=1 Xi

diverges a.s.

Proof: For part (a) we adapt Chung’s argument (see [5, Theorem 5.4.1] or [4]) for a sequence of independent

random variables to hold for an mds. Suppose φ and (an) are as stated and (dn) is an mds on [0, 1] such that

Σ∞n=1
IE(φ(dn))

φ(an) < ∞. For all n, let Fn denote the distribution function of dn and Yn = dnχ[|dn|≤an]. Arguing

exactly as Chung,

∞∑
n=1

σ2

(
Yn

an

)
≤

∞∑
n=1

IE
(

Y2
n

a2
n

)
≤

∞∑
n=1

∫
[|x|≤an]

φ(x)
φ(an)

dFn(x) ≤
∞∑

n=1

IE(φ(dn))
φ(an)

< ∞,
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noting the second inequality holds since φ(x)
x2 non-increasing implies x2

a2
n
≤ φ(x)

φ(an) for |x| ≤ an. Thus, by the

Kolmogoroff Maximal Inequality for martingale difference sequences (see [11, Theorem Ia p. 236 and pp.

386-387]) it follows that
∑∞

n=2
Yn−IE(Yn|Y1,...,Yn−1))

an
converges a.s.

Next observe that for all n ≥ 2, IE(Yn|Y1, . . . ,Yn−1) = IE(Yn−dn|Y1, . . . ,Yn−1) a.s. since IE(dn|Y1, . . . ,Yn−1) =

0 a.s. Therefore,
∥∥∥ IE(Yn|Y1,...,Yn−1)

an

∥∥∥
1

=
∥∥∥ IE(Yn−dn|Y1,...,Yn−1)

an

∥∥∥
1
≤
∥∥∥Yn−dn

an

∥∥∥
1
. Now,∥∥∥∥Yn − dn

an

∥∥∥∥
1

=
∫

[|dn|>an]

|dn|
an

dλ =
∫

[|x|>an]

|x|
an

dFn(x) ≤
∫

[|x|>an]

φ(x)
φ(an)

dFn(x) ≤ IE(φ(dn))
φ(an)

,

noting the first inequality holds since φ(x)
x non-decreasing implies |x|

an
≤ φ(x)

φ(an) for |x| > an. Hence,∑∞
n=2

∥∥∥ IE(Yn|Y1,...,Yn−1)
an

∥∥∥
1

< ∞ forcing
∑∞

n=2
IE(Yn|Y1,...,Yn−1)

an
to be convergent a.s. Therefore,

∑∞
n=1

Yn

an

converges a.s.

Following Chung’s argument again, we get:

∞∑
n=1

λ[dn 6= Yn] =
∞∑

n=1

∫
[|x|>an]

dFn(x) ≤
∞∑

n=1

∫
[|x|>an]

φ(x)
φ(an)

dFn(x) ≤
∞∑

n=1

IE(φ(dn)
φ(an)

< ∞,

where the first inequality holds since φ(x)
x non-decreasing forces φ to be non-decreasing. Therefore, the

Borel-Cantelli lemma implies that
∑∞

n=1
dn

an
converges a.s. Finally, Kronecker’s Lemma gives 1

an

∑n
i=1 di

converges to 0 a.s.

The proof of (b) was given by Chung in [4].

Theorem 2.3 Let F be an N-function satisfying the ∆2-condition such that F (x)
x2 is non-increasing on [0,∞)

and (an) is a sequence of positive numbers with an ↗∞. The following are equivalent:

(a) 1
an

∑n
k=1 dk → 0 a.s. for every mds bounded in the LF norm.

(b) 1
an

∑n
k=1 dk → 0 a.s. for every weakly null mds in LF .

(c) 1
an

∑n
k=1 Xk → 0 a.s. for every norm null sequence of mean zero independent symmetric random variables

in LF .

(d)
∑∞

n=1
1

F (an) < ∞.

Proof: Clearly (a) ⇒ (b) ⇒ (c) regardless of the N-function F . Suppose F is ∆2 and satisfies F (x)
x2 is

non-increasing on [0,∞). Note that since F is an N-function, by definition F (x)
x ↗∞.

Now, we prove (c) ⇒ (d) by contraposition. Suppose
∑∞

n=1
1

F (an) = ∞. Then there is a sequence (bn) of

positive numbers such that bn → 0 and
∑∞

n=1
bn

F (an) = ∞. Then by Lemma 2.2(b), there exist independent
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symmetric mean 0 random variables (Xi) such that IE(F(Xi)) = bi for all i and 1
an

∑n
i=1 Xi diverges a.s.

Since bn → 0 we have that
∫ 1

0
F (Xn)dλ → 0 and as F is in ∆2, ‖Xn‖F → 0. Hence (c) ⇒ (d).

Finally, we proceed to establish (d) ⇒ (a). Let (dn) be a mds bounded in the LF norm and suppose that∑∞
n=1

1
F (an) < ∞. Since (‖dn‖F )n is bounded and F is in ∆2 we have that

(∫ 1

0
F (dn)dλ

)
n

is bounded as

well. Hence
∑∞

i=2

∫ 1

0
F (di)
F (ai)

dλ < ∞. So by Lemma 2.2(a), 1
an

∑n
k=1 dk → 0 a.s. Hence (d) ⇒ (a).

Note that if F is in ∇3 then F satisfies the hypothesis of Theorem 2.3. The following Corollary is then

immediate:

Corollary 2.4 If F is an N-function in ∇3 then any weakly null mds in LF has arithmetic means that

converge to 0 in norm. Furthermore, the arithmetic means of a weakly null mds converge to 0 a.s. if and

only if
∑∞

n=1
1

F (n) < ∞.

3 Some Remarks on Convergence in Arithmetic Means of Bounded

Sequences in Lp[0, 1], 1 < p < ∞

As noted in the introduction, the fact that any bounded martingale difference sequence in Lp[0, 1], 1 < p < ∞,

has arithmetic means that converge almost surely to 0 follows from the fact that martingale difference

sequences in Lp[0, 1], 1 < p < 2, possess upper p-estimates. From weak compactness and Egorov’s theorem,

it then readily follows that any bounded martingale difference sequence in Lp[0, 1], 1 < p < ∞, has arithmetic

means that converge in norm to 0. However based on the work of Banach and Saks [2], Freniche [6] was able

to give a surprisingly simple proof of the latter result. With a little more work, in theorem 3.1 we extend

Freniche’s method of proof to derive the existence of upper p-estimates for martingale difference sequences

in Lp[0, 1], 1 < p < 2, from which the stronger conclusion of almost sure convergence of the arithmetic means

of a bounded mds to 0 easily follows.

Theorem 3.1 If (dk) is a bounded mds in Lp[0, 1], 1 < p < ∞, then 1
nΣn

i=1di converges almost surely to 0.

Proof: Note that by monotonicity of the Lp norms, it suffices to prove the theorem for 1 < p < 2. Let

1 < p < 2 be given. Let q be such that 1
p + 1

q = 1. We begin by establishing the existence of the well-known
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upper p-estimates for (dn) for all n and all scalars c1, . . . , cn:∥∥∥∥∥
n∑

k=1

ckdk

∥∥∥∥∥
p

p

≤ Cp
p

n∑
k=1

|ck|p‖dk‖p
p

for some constant Cp depending only on p. Let sn =
∑n

k=1 ckdk. Thanks to the work of Banach-Saks [2,

(1), p. 52], we know there exists a constant A ≥ 1 such that:

|a + b|p ≤ |a|p + p|a|p−1sgn(a)b + A|b|p

holds for all real numbers a and b. So, it follows that a.s.:

|sn|p = |sn−1 + cndn|p

≤ |sn−1|p + p|sn−1|p−1sgn(sn−1)cndn + A|cndn|p.

Note that dn is in Lp and |sn−1|p−1 is in Lq. Hence, cn|sn−1|p−1sgn(sn−1)dn is in L1. Furthermore, observe

that cn|sn−1|p−1sgn(sn−1) is σ(d1, . . . , dn−1) measurable. Hence,∫ 1

0

cn|sn−1|p−1sgn(sn−1)dndλ =
∫ 1

0

IE(cn|sn−1|p−1sgn(sn−1)dn|d1, . . . ,dn−1)dλ

=
∫ 1

0

cn|sn−1|p−1sgn(sn−1)IE(dn|d1, . . . ,dn−1)dλ

= 0.

Therefore, we have:

‖sn‖p
p ≤ ‖sn−1‖p

p + A‖cndn‖p
p.

Reapplying the previous inequality to sn−1 gives ‖sn−1‖p
p ≤ ‖sn−2‖p

p + A‖cn−1dn−1‖p
p, and so:

‖sn‖p
p ≤ ‖sn−2‖p

p + A(‖cn−1dn−1‖p
p + ‖cndn‖p

p).

Continuing in the same fashion the upper p-estimates are established:

‖sn‖p
p ≤ A

(
n∑

k=1

|ck|p‖dk‖p
p

)

for all n. With M = supn ‖dn‖p and ck = 1
k , it follows that supn ‖sn‖p

p ≤ AMp(
∑∞

k=1
1
kp ) < ∞. Hence,

(sn) is an Lp-bounded martingale and so (sn) converges a.s. Since 1
ck

= k ↗ ∞, Kronecker’s lemma gives∑n
k=1

dk

cn
=
∑n

k=1
dk

n converges to 0 a.s.
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The ultimate theorem in almost sure convergence in arithmetic means is that of Komlos in [9]. Theorem

3.1 can be used to obtain this result in the special case where (fn) is bounded in Lp[0, 1] for some 1 < p < ∞.

A theorem of Gaposhkin in [7] is needed:

Theorem (Gaposhkin): If (fn) is a weakly null sequence in Lp[0, 1], 1 ≤ p < ∞ then there is a subsequence

(fnk
) of (fn) and a mds (dk) in Lp[0, 1] so that

∞∑
k=1

‖fnk
− dk‖p < ∞ .

With this theorem in hand, we proceed into establishing the following:

Corollary 3.2 Let (fn) be a bounded sequence in Lp[0, 1], 1 < p < ∞. Then there is a function f in Lp[0, 1]

and a subsequence (hn) of (fn), each subsequence of which converges in arithmetic mean to f a.s.

Proof: Let (fn) be a bounded sequence in Lp[0, 1]. Since Lp[0, 1] is reflexive, there is a function f in Lp[0, 1]

and a subsequence (gn) of (fn), so that gn → f weakly. The sequence (gn − f) is weakly null and so by

Gaposhkin’s theorem, there is a subsequence (hn) of (gn) and a mds (dn) in Lp[0, 1] so that

∞∑
n=1

‖(hn − f)− dn‖p < ∞.

Let (hnk
) be any subsequence of (hn) and let ck = hnk

− f . Then,
∑∞

k=1 ‖ck − dnk
‖p < ∞, and so the series∑∞

k=1(ck − dnk
) converges to some function in Lp[0, 1] a.s. Thus, (ck − dnk

) → 0 a.s. Now,

1
N

N∑
k=1

ck =
1
N

N∑
k=1

(ck − dnk
) +

1
N

N∑
k=1

dnk
.

Notice that (dnk
) is still a mds in Lp[0, 1] and so 1

N

∑N
k=1 dnk

→ 0 almost surely, thanks to theorem 3.1.

Hence 1
N

∑N
k=1 cnk

→ 0 almost surely. So,

1
N

N∑
k=1

hnk
→ f almost surely.
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